Features of a new chromogenic kit for determination of FIX activity in plasma and FIX concentrates.
Pia Bryngelhed, Per Rosén, Steffen Rosén
Rossix AB, Taljegardsgatan 3B, Mölndal, Sweden

Background
FIX activity in plasma and concentrates is currently determined with clotting methods. The accuracy may be compromised due to low-resolution dose-response curves. New rFIX variants may be a challenge regarding suitability of clotting methods.

Objective
Development of a chromogenic kit, Rox Factor IX, for determination of FIX activity from 2 IU/mL down to 0.01 IU/mL in plasma and for potency assignment of FIX concentrates.

Method principle
FIX is activated by FXIa with simultaneous activation of FX in the presence of FVIII, phospholipid and Ca^{2+} followed by FXa hydrolysis of Z-D-Arg-Gly-Arg-pNA. Similar to clotting methods, FVIII is activated by thrombin generated in the assay. A heparin antagonist and a fibrin polymerization inhibitor are included in the reagents. There is no use of FIX deficient plasma.

Results
Two plasma samples with 0.01 IU/m were accurately determined and showed a typical response of 30 mA405/min above the blank in a microplate assay. Overlapping dose-response curves were obtained for plasma diluted in kit buffer ± FIX deficient plasma. Analyses of low (L) and normal (N) control plasma showed intra and inter assay CV of 4 % and 9 % (L) and 5 % and 5 % (N), respectively, in a manually performed method. Analysis of artificially prepared plasma samples with 0.01 – 1.8 IU/mL FIX activity (assayed at 1:20 or 1:80 dilutions) showed a quantitative recovery with R^2 = 0.998 and slope 1.02. Spiking of FIXa into the 4th IS showed no interference at < 1%. Analysis of pdFIX concentrates vs the 4th IS (07/182) showed a recovery in agreement with assigned values and the chromogenic kit method correlated well with a FIX clotting method (ACL 9000) with R^2 = 0.9 (n = 53). Altogether, the performance of Rox Factor IX should make it an interesting alternative to FIX clotting methods.

Presented at the International Society on Thrombosis and Haemostasis (ISTH) XXIII Congress, Kyoto, Japan; July 23 - 28, 2011
Features of a new chromogenic kit for determination of FIX activity in plasma and FIX concentrates.

Bryngelhåk Pia, Rosén Per, Rosén Steffen
Rossix AB, Mölndal, Sweden

Background
Factor IX (FIX) activity in plasma and concentrates is currently determined with clotting methods. The accuracy of clotting methods may be compromised due to low resolution dose-response curves. Furthermore, new recombinant FIX variants (rFIX) may constitute a challenge regarding suitability of clotting methods.

Objective
To evaluate a new chromogenic kit (Rox Factor IX) for determination of FIX activity from 2 IU/mL down to 0.01 IU/mL in plasma and for potency assignment of FIX concentrates.

Materials and Methods

Method Principle
FIX is activated by FIXa with simultaneous activation of FX in the presence of FVIII, phospholipids and Ca²⁺ followed by FIXa hydrolysis of Z-D-Arg-Gly-Arg-pNA. Similar to clotting methods, FIX is activated by thrombin generated in the assay. A heparin antagonist and a fibrin polymerization inhibitor are included in the reagents. There is no use of FIX deficient plasma.

Chromogenic Method
The method was performed manually (Table 1). Absorbance readings were made using a T-Max microplate reader (MolecularDevices). Evaluations were made with Log-log and 4-parametric curve-fitting models.

Correlation Study
Artificially prepared plasma samples (n=30) and plasma samples from normal healthy donors (n=36) were analysed. Artificial plasma samples were prepared by diluting normal reference plasma (Precision Biologics) with FIX deficient plasma (Precision Biologics) and by spiking of the 4th IS FIX Concentrate to the reference plasma. FIX potencies were assigned with Rox Factor IX and a one-stage clotting method. The one-stage clotting method was performed on ACL 9000 (Instrumentation Laboratory) using APTT Reagents (MediRox) and FIX deficient plasma.

Precision, Discrimination and Detection Limit
Samples were prepared by spiking of the 4th IS FIX Concentrate into FIX deficient plasma and analysed in five independent assay series (N=5) with four replicates in each series (n=20).

Effect of Factor IXa
To evaluate the effect of preactivation of FIXa, different levels of the 1st IS FIXa, 0.48 IU/mL, was added to the 4th IS FIX Concentrate.

Correlation to a One-Stage Clotting method (y=0.96, R²=0.97)

Results

Figure 1: FIX dose response for a plasma standard in the range 0.5-25 mIU/mL (plasma diluted 1:2000-1:400) presented in a Log-Log graph (n=4).

Figure 2: Parallel line evaluation of a pdFIX concentrate sample vs. the 4th IS FIX Concentrate in the range 0.5-4 mIU/mL, using 4 min hydrolysis at 37°C (n=3).

Figure 3: Correlation to a One-Stage Clotting method (n=66).

Figure 4: Assigned FIX potencies of artificially prepared plasma samples (n=30)

Table 1: Rox Factor IX, Manual Method

<table>
<thead>
<tr>
<th>Sample Dilution* (18-25°C)</th>
<th>25 µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent A (18-25°C)</td>
<td>25 µl</td>
</tr>
<tr>
<td>Reagent B (37°C)</td>
<td>150 µl</td>
</tr>
<tr>
<td>FIXa Substrate (37°C)</td>
<td>50 µl</td>
</tr>
<tr>
<td>Citric Acid, 2% (18-25°C)</td>
<td>50 µl</td>
</tr>
</tbody>
</table>

Reagent A: human FVIII, human FIX and a fibrin polymerization inhibitor.
Reagent B: bovine FIXa, calcium chloride and phospholipids.

*Plasma samples with expected FIX activity ≤ 0.25 IU/mL were diluted 1:80. Plasma samples with expected FIX activity > 0.25 IU/mL were diluted 1:20.

FIX Concentrates were diluted to arrive within the standard range (0.5-25 mIU/mL)

Table 2: Discrimination at relevant FIX deficiency classification levels (n=20).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean ± SD</th>
<th>± 2 SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mIU/mL</td>
<td>10 ± 1</td>
<td>8-12</td>
</tr>
<tr>
<td>15 mIU/mL</td>
<td>15 ± 5</td>
<td>13-17</td>
</tr>
<tr>
<td>33 mIU/mL</td>
<td>33 ± 3</td>
<td>31-35</td>
</tr>
<tr>
<td>53 mIU/mL</td>
<td>53 ± 3</td>
<td>51-55</td>
</tr>
</tbody>
</table>

Table 3: Assigned values of plasma samples calculated against a standard diluted in diluent + FIX deficient plasma (n=4).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Diluent</th>
<th>Diluent + FIX deficient plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mIU/mL</td>
<td>9.6 ± 0.1</td>
<td>9.1 ± 0.1</td>
</tr>
<tr>
<td>20 mIU/mL</td>
<td>20 ± 0.4</td>
<td>19 ± 0.4</td>
</tr>
<tr>
<td>53 mIU/mL</td>
<td>53 ± 0.9</td>
<td>53 ± 0.9</td>
</tr>
<tr>
<td>0.46 IU/mL</td>
<td>0.46 ± 0.01</td>
<td>0.46 ± 0.01</td>
</tr>
<tr>
<td>0.54 IU/mL</td>
<td>0.54 ± 0.02</td>
<td>0.50-0.58</td>
</tr>
</tbody>
</table>

Figure 5: Assigned potencies of a FIX concentrate sample spiked with 0 - 10 mIU FIXa/IU FIX (n=3).

Conclusions
- Rox Factor IX provides a robust method suitable for analysis of Factor IX activity in human plasma and in FIX concentrates. The method makes no use of FIX deficient plasma.
- The kit method shows a high agreement and correlation with a one-stage clotting method (y=0.96, R²=0.96, n=66).
- A proper discrimination is obtained at relevant FIX deficiency classification levels.
- Detection Limit is about 5 mIU/mL for plasma diluted 1:20.
- FIX Concentrates diluted to 0.5 - 4 mIU/mL are suitably potency assigned using the bio assay parallel line evaluation.
- There is no interference of FIXa up to 10 IU FIXa/IU FIX.